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1. INTRODUCTION

1.1. Purpose. The occurrence of data involving several variables

is quite common to the reduction of geodetic information to a useful

form. Reduction of such information requires certain generalizations

and, for simplicity, it is often assumed that the variables are com-

pletely independent of each other. In many instances, this is not a

valid assumption and some type of reduction which considers the inter-

relationship between variables is necessary.

The following sections describe a method of reduction which will

reflect the correlation between the variables. Extensive use is made

of statistical, geometrical, and matrix properties.

1.2. Assumptions and Generalizations. The mean value (i) of a

random variable is computed by:

n

Z i
X n

where:

x = mean value

x = a random variable
n

E = sign indicating the sum of all values (xl, x2, ... , xn)i-l

n - number of measurements.

As n grows larger the value of i becomes more reliable. In

theoretical statistics, n is considered to approach infinity and



therefore, incorporates a universe of readings. When n approaches

a0, the computed value approaches the theoretical value. The

theoretical value for the mean is generally considered the expected

value and symbolized by E x.

Another statistical parameter, the standard error (a), denotes the

dispersion of the measured values around the mean and is computed by:

n
(xi - :)

i=l

n

The square of the standard error (a 2 ) is ]nown as the variance.

Since 2 and n also enter the computation of the standard error, it

is again assumed that the true standard error is obtained with n ap-

proaching c . While the distribution of x is discrete no devastating

error results when the discrete function is considered continuous with

n ranging from -a@ to + co . It is also assumed that the variables

are normally distributed with systematic errors eliminated.

1.3. Independent and Dependent Errors. In error terminology two

types of errors are considered - dependent and independent. The

treatment of independent errors is comparatively simple because, as the

name impliesthey are independent of each other. For example, the

magnitude of e of one variable is completely independent of' the magni-

tude of the error eI of another variable. Dependent errors (, D , cD),

however, are more involved as the magnitude and even the occurrence

2



of eD depends on the magnitude or occurrence of eD.
12

Correlation deals with the interrelationship of dependent errors.

The degree of correlation is expressed by a numerical quantity called
1

the correlation coefficient (p). Although independent errors are

uncorrelated the converse is not necessarily true. It does not follow

that two errors are independent solely because their correlation

coefficient is zero. Consider the distribution which has a frequency

function expressed as x2 + y2 - R2 . Since this is a circle pos-

sessing symmetry, the mean values and p would be considered zero and

uncorrelated. However, to be independent it is necessary that f(x,y)

be of the form f(x) f(y).

2. MATRIX PROPERTIES

The matrix method lends itself to problems involving numerous

variables and mathematical manipulations. It provides a system of

compact expressions for series of equations and permits performance

of mathematical processes with a minimum of work. Some of the basic

properties of the matrix method are presented at this point to insure

uniform understanding.

2.1. Definitions and Notations. An aggregate of numbers arranged

in a rectangular array is called a rectangular matrix, or simply, a

1.
The theory of independent errors, their probabilities and propagational
methods for univariate, bivariate, and trivariate cases is developed
in TR-96 "Principles of Error Theory and Cartographic Applications."
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matrix. The array has m rows and n colunns and is denoted by:

a1 1  a12 ...

a a a
A 21 .22 2n

am  a ...

the first subscript designates the row, the second the column in which

the element is located. If the dimensions, m x n (m by n), of A are

borne in mind, it suffices to use the brief notation:

A - [ajj] (i = 1, 2, ... , m; j = 1, 2, ... , n).

Two matrices are equal if their corresponding elements are equal.

Matrices composed of a single row are called row matrices and those

composed of a single column column matrices. In a square matrix of

the nth order, the number of rows equals the number of columns.

Among square matrices, an important role is played by diagonal

matrices, i.e., a matrix in which only the elements of the principal

(leading) diagonal are different from zero:

a, 0 ... 0

0 a 2  ... 0

0 0 ... %

4



If all the numbers a, of such a matrix are equal to each other, the

matrix is said to be a scalar:

0 ... 0
o cx ... 0

0 0 ... a

and, if a l 1, the matrix is said to be the unit matrix I:

1 0 ... 0

0 i ... 0

I=

0 0 ... 1

A matrix with elements equal to zero is a null or zero matrix and

is designated by the symbol 0.

The determinant of a matrix is associated with any square matrix.

The determinant of the square matrix P is designated IP and its

elements are the elements of matrix P without disarrangement. If

IPI y O, then P is called a non-singular matrix.

When the rows and columns in matrix A are interchanged:

"al a,, ... aln

a21  a2 ... a2n

A a..- -[aiji,

a a. ... a
P11 mnj

5



the transposed matrix or transpose:

a1 1  2 1  •..a

A T a1 a22  ... am (ajil

a ln a2 n . mn
A

is obtained.

2.2. Elementary Operations on Matrices. To effectively use

matrices, the methods of addition and multiplication must be defined.

When the elements of a matrix are obtained by multiplying all the

elements of the matrix A by a number a, the result is called the

product of a and the matrix A.

"a1 1  CM12  . . sb

ore2 1  a22 .. a2 n

aA Caml Ca.2 ... aa~n

For example let:

a- 3, and A 2 6

then:

3.2 3.6 3o2



When the elements of a matrix C are the sums of the corresponding

elements of A and B, the result is the sum of A and B and is defined

only when A and B have the same dimensions.

3.1 +bi, a12 +b ... an +bi

C - A+B a +b 2 l a2+b 2 2  ...

a il bml sa + br ... ara +b M

For example, let:

A] 3 and B =r6 3 2 -4 7 8

Then:

A + B C - [0 + 0 + 9 =+] [ 3 3 : 0r6+3 3 +(-4). 2 +7 1 + 8- _ 9 9

2.2.1. Basic Properties of Matrix Addition and Multiplication.

A+ (B + C) - (A +B) + C

A+B B+A

A+0 = A

(a +1)A a A + pA

a (A +B) - + +OB

where a and 0 are numbers.

2.2.2. Maltiplication of Matrices. Multiplication of the

matrices A and B is defined if, and only if, the number of columns

7



of matrix A equals the number of rows of matrix B. The elements of

the product, C = AB, are defined in the folloving manner: the

element in the ith row and j th column of C is equal to the sum of

the products of the elements of the ith row of matrix A by the

corresponding elements of the jth column of matrix B. Thus:

"all a12 ... aln" "b11 b12 b lp
a"." bl b ... bp

C = AB = a22 a2  b 21 2p

a., a ... a bnl n b .. bnp

Cll c12 .. lp

c2 1  c2 2  ... c2p

CM c ..2 c M
Cml Cm2 -. mrp

where:

Cjj - ailblj + a1 2 b2 j + ... + ainbnj = aikbkj

k=-1

(i - 1i, 2,., m; J = 1, 2, ... , p)

Note that the product of two rectangular matrices is again a

rectangular matrix, where the number of rows is equal to the number

of rows in the first matrix, and the number of columns equals the

8



nmber of coluims in the second. For example, let:

22
A- = e]an B [6 3]

Then:

A2.5 + 3.6 +4.2, 2.2 + 3"3 +4"11AB = C L5.5 + 2.6 + 1.2 s 5.2 + 2.3 + 1 -

36 17]

39 17

Another property of matrix multiplication is:

T T

(-B) B'A

or, the transpose of the product of two matrices is equal to the

product of the transpose of each matrix in reverse order. (This

property muy be generalized to products involving more than two

matrices.) For example, let:

A [e and B

then:

[B nB] and (AB) T [ 20]

9



Then:

(AB)T i .AT o:

2.3. Inversion of a Matrix. The inverse a-1, or the reciprocal

of a real number, is defined if a 0. There is an analogous

operation for square matrices. If A is a non-singular square matrix,

then a unique matrix written (A-1 ) exists with the important property:

AA- I = I

or:

A'IA = I

where I is the unit matrix. If it exists, the matrix A-1 is called

the inverse matrix of A and expressed by:

A'= [Bij]

where:

[aij]T aj
[bij] - 1A1 or equivalently bij =

That is, the bij element (the element in the ith row and jth column

of the inverse matrix) is found by 1st transposing the matrix A; then

determining the cofactor (aJi ) of each element in the transpose; and

dividing each cofactor by the determinant of matrix A. The cofactor

10



is the signed minor determinant obtained by deleting all the elements

in the same raw and column as the element whose cofactor is desired;

if the sum of i + j (row number + column number) is even, the minor

determinant is multiplied by a positive one (+I); if i + j is odd

the minor determinant is multiplied by negative one (-1). For example,

let:

A= 1 ] = j Ia T= ~ 1 a~

IAI = 3 - 8 = -5

al' = (+ I) W = 1

a12 = (-l)(4) = -4

2 1  
(-l) (2) = -2

a22 = (+L) (3) = 3

where a12 = aj i , the cofactor of the element in the 1st row and 2nd

column of AT. Since i + j = I + 2 = 3 multiply minor determinant

by (-l).

ii



Hence:
11

IAI -5 5

32
a-2 2

22

b = =
IAI -5 5

and:

A'B ;Ij 2

L 5

The result can be checked by forming the product:

3(- 1) + i() 3(.) + 4(-

= [) ])
Since A'A"I  = I, the inverse A-1 is correct.

The above scheme is impractical for matrices of order greater than

two. Consequently, other schemes for the computation of inverses have

been devised. For a 3rd order square matrix, the procedure is as

follows:

12



let:

A = aEE5 22 E23
31 32 a 33

then:

mt]A-1 r s

uv W1

where:

1 -a 22 a3 3 - a2 3a32

IAI

m --

n2 -a12a23  322

IAI

r - a2 3a3 1 " 21a33
IAI

r a23,31 -_ala3l

B = IAI

IAI

-i32"a2 2 az
U a2 ,a 32  31

IAI

13



a12a31 - all32

IAI

al.1a.2 - al2a21

IAI

2.4. Differentiation of Matrices. Let A(x) be a matrix depending

on a numerical variable x so that the elements of A(x) are numerical

functions of x. That is:

a 1 (x) a 2 (x) ... a (x)

A(x) a x) "" a2 n(x)

a (x) a (x) ... a(x)
Lml m2 m

The derivative of A(x) is:

da11 (x) da12 (x) da (x)

dx dx dx

da 2 1 (x) da 22 (x) da 2 n(x)

dA(x) dx dx dx
dx

daml(x) dam2(x) damn(x)

dx dx dx

14



For example let:

A(x) " x2  5 3

then:

dk(x) - 6x 6X2  kx l
x 2x 20x3 J

Partial derivatives are obtained similarly. Suppose that:

A-x 2 4 1 x2  2x +: +x2 + x
4 2 2 x3  4x,+ N +2x + 2 3

then:

(A.X) 2 + 0 + 0 (A.X) 0 4 +

L4 + o + x1 2  + o

+0+ + I 0 + 5
b(A-X) I +0+

3 LO+o +2
It can be seen that partial differentiation of the rows of A.X with

15



respect to each x i yields the ith column of matrix A.

2.5. Quadratic Forms. A polynomial:

f = f(x,y) = 5x2 +6xy+8y 2 ,

with real coefficients and every term of degree two in x and y, is a

quadratic form in x and y. Quadratic forms play a prominent role in

analytical geometry and statistics. To relate them to matrices, the

polynomial is written:

f = 5x 2 + 3xy + 3xy + 8y 2

= x(x+3y) +y(3x+ 8 y)

= Cx, y2 - x,y [5y ;
13x +8 y3 8

Thus the matrix

A = [5 3]

may be used in expressing the quadratic form f:

f = XTAX

where:

1.1
X = column matrix []

The column matrix X can also be written (x y] which is sometimes
a more desirable form.

16



3. MOMENTS OF A DISTRIBUTION

The concept of moments is utilized for a geometrical interpreta-

tion of the parameters of an error distribution. The first moment

of mass is the product of the mass and the moment arm. The first

moment, when divided by the mass, is defined as the center of mass.

The second moment, moment of inertia, is defined as the sum of the

products obtained by multiplying each elementary mass by the square

of its distance from the line. The second moment, when divided by

the mass, is defined as the square of the radius of gyration. Con-

sidering a distribution representing a hypothetical unit mass, the

moments of the hypothetical mass correspond to the statistical para-

meters of the distribution.

Consider the distribution of missile impacts around an aiming

point, the performance minus computed values (impact minus aiming

point) are expressed as downrange and crossrange errors, fig. 1.

y crossrange error

aiming point downrange error

xS 0!

impact points

17



The relationships between statistical parameters and moments are used

to derive the distribution function [f(xy)] which describes the

frequency distribution of the errors. The errors are assumed to

follow a normal distribution.

The analysis of a distribution by its moments, in the pure mathe-

matical senseis complicated. For convenience it is assumed that the

moments, as found by succeeding sections, describe a unique distri-

bution.

3.1. First Moment. The first moment corresponds to the mean

value of a distribution. The mean values (R,Y) of the crossrange and

downrange errors are computed by:

n n

=i=l1_ i=l
n n

where:

x = crossrange error

y = downrange error

The correspondence between the mean value and first moment is appar-

ent from the definition of the first moment and can be visualized by

considering small masses (di = 1) with coordinates x i along an assumed

straight bar (whose weight is neglected). The first moment or

1.
A thorough discussion concerning moments and uniquiness of distri-
butions is contained in references Nr. 4 and 12.
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center of mass of the system of particles (xi) is:

dm dm

I 8 4 i x 1
I I I I I I I I I scale

n

z1xi

xdm =i=in

n
similarly Y

Ydm n

All masses dm are considered equal to 1.

The values i and y are the centers of the two distributions f(x)

and f(y), the point (2,Y) is then the center of the combined distri-

bution f(x,y). For convenience of notation and computation the

coordinate system is considered as having its origin at (,y).

In the theoretical approach, the mean value is the expected value.

Since all possible values must be considered, the theoretical first

moments are: + 40

Ejxj = f(x)dx =

Elyl J-Yf(Y)dy 7g

and:

5--ix as n-.

Y-p y as n -ia

19



3.2. Second Moment. The second moment, the moment of inertia,

corresponds to the variance of a distribution. The second moment of

an object describes a physical characteristic of the mass, the manner

of which the mass is distributed within the body; the variance denotes

the similar characteristic within a distribution. The second moment,

about the coordinate axis, of the system of particles xi, introduced

in section 3.1. is:

n

ZXidm

i=1

thus the theoretical second moment is:

fx2m

The variance by definition is the mean of the squares of all the errors

and computed by:

n

x n

where x is the error.

Written in theoretical sense:

2xf(x)dx

2 _w_ _

ax  4

f (dx

20



since:

f(X)dx " 1

ax = =(x)ax = = x2

similarly:

y,2= y~~ydy= Y = +21

A standard error ellipse can now be drawn with its center at the

origin and a. and ay as its semimajor and semiminor axes. The

ellipse displays the concentration of the distribution of downrange

and crossrange errors in the x and y directions.

3.3. Mixed Product Moment. The covariance is the mixed product

moment. Although first and second moments of x and y were described

earlier, when the moments of two or more variables are considered, a

third type, the mixed product moment (covariance), exists. By defi-

nition the covariance is:

PXY = ,fl.yf(x.y)dxdy Etx,yt

where: integration takes place over the entire area of the distri-

bution.

3.4. Moment Generating Function. The moment generating function

is introduced to avoid difficult integration which is encountered in

21



moment (variance-covariance) functions. The moment generating function

for the univariate case (single variable) is defined as:

Bjox - feexf(x)dx

where: 6 is a mathematical device introduced for the purpose of defin-

ing the moments.

Developing eex in power series:

ex = 
2x2  93 x3

e =i+ @x + - + - +..
2! 3!

Integrating the power series:

f2x2 3x3
f"f(x)dx f(x)dx

)f x + e f(x)dx + f(x)dx + 3f(x)dx +21!.

... + - k  f(x)dx + ...k!

From previous definitions:

+0+ r10 , f . f; (x X -

f ) -x = 1; xf6x)dx = gx g

and:

f kf(x)dx ! kth moment of x

22



Therefore:

E eel - 1 + *x +r,- VXX +e"

The successive derivatives of E{ev}with respect to 0, evaluated at

O - 0 yields the corresponding moments.

Since:

dk  ex= xke~x

at e = 0

ak e°f(x)dx xkf(x)dx - Ejxi

-e xdk _401

Therefore the moment k of the distribution function may be obtained

by the kth derivative of the function. This property will be applied

later.

3.5. Moment Matrix. The moment matrix (M) contains the parameters

of the distribution and is used as a convenient notation describing the

distribution function.

M = x xy

where:

-xx 
= variance in x(cU)

2
pyy - variance in y(ay)

pxy - pyx = covariance of x and y

23



4 1

xy
p = correlation coefficient

let o = px. = xy

and:

M will always be a symmetric matrix.

The rank (r) of M displays the properties of a distribution.

When:

r = 0; pxx = 1yy = 0 the mass is concentrated at a point, the

center of mass.

r = 1; p " 9yy = 0 the mass is concentrated on a straight

line passing through the center of mass.

r > 1; there is no straight line which contains the total mass

of the distribution.

4. APPLICATION OF MOMENTS TO THE NORMAL ERROR DISTRIBUTION

The normal error distribution is written in the form:

f - K2 exp{-1Q2 
2

where:

is the quadratic expression of the error distribution.

K2 is the constant corresponding to a particular %.

To be proven later.
2. For notation purposes the exponential values (ex) will be written

expxI.

24



The general normal bivariate error distribution form, expressed by

its statistical parameters, is obtained by use of the moment gener-

ating function and moment matrix.

4. 1. Determination of K, Constant for the Normal Bivariate Error

Distribution. The quadratic expression Q2 for the bivariate error

distribution is written:

= a1 1X
2 + 2aI2XY + a22Y

2

Then, from section 2.4.:

Q 2 = [X ,Y ] A [ :] a [ : 1 a~ v ][ X
where:

x= x -

y =(y

For convenience let : = 0

For a definite positive quadratic form it is necessary that:

a11>0

a12 > 0

a a a 2

lla22 > 12

The fact that, over the entire x,y range, the integral of the f(x,y)

function is unity (1) is used to determine K 2 . That is:

i = -<Tj f - . (a 2 + 2a xy + y2
2 )Jdy
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completing the square of Q2:

a ix + al + - a y
i11llx+a 2 2 21

xa + _2y  2 _

Thus:

a2 a 2 aa
1p - 1l --2 xy + a1 2 i2 ( 2 i dxdyf2- 2_ all al 2 .2 1 a2

Letting:

Z= (x + 12 y)

and using:

(+o

Then:

fa 2 a 2 y2dZldYFex; 2 ll a z 1) (a22 -a 1

1Letting :

c i - and c2  i 1

1l = 2f;alI -c2.e~. 22J ad
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1t = '2 1

1=K2
~a~a

-K22 2i

= Y12

a aa 2
=1 22 12

V ala2
T 2t 2Y2 = 23t

2
The actr ala22- a2 is the determinant of matrix A.

Therefore:

Y2 7

and the general bivariate normal error distribution is written:

f(x..y) = iexp. ( alix2 + 2a12xy + a2,y2)}

= VIAIexp 2

4.2. The Bivariate Error Distribution in Terms of Statistical

Parameters. To determine the significance of the elements all, a22

and a12 of f(xy), assume a normal bivariate distribution and deter-

mine its variance and covariance by use of the moment generating

function. From section 3.4. the moment generating function for the

univariate case is:

E~eex} -fefx
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For the bivariate case:

E ex [ox + Oy]} fJ x e {fx + Gy} f(x, y) dxdy

where:

f(x, Y) -ij exp{~ 2

Therefore:

Ejep x +jj ex ~ 2  + ex + cbdy

or:

E~exr[Ox~ey [~fx {. allx2 + 2a.,xy + aL>y2)

+ xx + eyydxdy

Expanding the right side of this equation:

1 2
+ xp (ex + ey] =xp - l x + y-2 +a a,

" 2 (22 " a + 1%A ) dxdy

where:

2 + a 2a e 0a22 x2 +  a  "  2x 11 2 22 2 2
R JAI Y a e; + a y +

. The details of this expansion are shown in Appendix A
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Letting:

Z x +2y- ; Z2  y +a 2 x-a )
all al11JA

Then:

E~exp [Ox + ey]} 21j'exp{ aljZ~j}aZi. JeP{ ~ ~Z 2

exp J a1x + a2212 +2a12xe

Letting:

a 22
C 1 1 1 a2

C1 = all, C2  2 22- a,,

E+xp [Ox + ey]} - 6I fexp f- C ux +dZ J f y + 2 jdZ2

2w "

• exp { (a1x + a229y +2a2OY

2 22 a .211l

ex 1a 1 2+ a 226 + 2a 1

For convenience, all, a22 , and a12 no longer denote cofactors (p 10)
a2 2 all a12

but denote the elements ,- ., and _ respectively.
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~2

2 -\ a 2 - a2 ,a 2 2 - 12

exp f+ (a1e + a 2 26y + 2a12x)

Therefore:

E~exp [Ox +Oy]} exp{f+ Ial2 + 22e2+ 2a12 6xy)

The variances 4 and 1v are obtained by evaluating the second partial

derivatives of Eexp [ex + ey] with respect to Ox and 9 y respectively

at Ox = Oy - 0. For convenience let E denote Eexp [Ox + Oy] in the

following presentation:
2 _

2X  = - ;2
Ox b 2

Iex

bE (alx + a12ey)

= E a al+ al1 + a 12ey) IE (alOx + a 12 y)

ex

At Ox = y 0

2 b 2E a1 1

box

Similarly:

y
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-E E 22 ey+a12x)

fy M E a22 + (a229Y + a2ex) IE (a22y + a12x)1I

At Ox - 8y - 0

2 2 E 2 2cry = T2 a

The covariance

a E$x- 2 E

aE Ea . 21 + ae28

= E ja2 + (a22ey + al2ex ( alex + al2y

AtO = e -0

GJCY = 9,1

From the previous discussion:

2x = second moment of x
2
2 = second moment of y

xy = Paxay - mixed product moment of x and y
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but:

Il . 2 a22a = IA
a22 . , all

= = IAT
a12

a IAi

Therefore the moment matrix of the bivariate normal distribution is:

M = [A-1=a12 a22  Paxay 02 J

Equivalently A M- 1

Following the procedure outlined in paragraph 2.2. for inversion:

22 222 22 222
Oxry - P Oxay Oxay- P axOy

M-I =2

22 222 02 2 222

1 -p
i (-p2) %ac (1 2)Ux xy

-P 1Cy - P a 1l

Thus:
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K-2  2 2~ (1- p2 2 ( 2 ) 2 2 2

p(1-

2/a2 ( 2)2 a202 (1 _2)2

21t 202p (i - p2)2

From 41.1.

Q- Ex YJA [X Y] = [x YJI.C1 [x Y]

= [XY 1 - p [ l

-p1

2 12 2pX

22 + -2 2 2

Thus f(XY) = K2 excp{-02
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f(xOY) = 1 e ___ 2) 2

Since:

X = (x-5i) and Y = (y- )

f(x,y) = 1 exp { (( +t
23traa fYT [2(1 P2) 2

2p (x /( -)

If' P - 0(case of independent errors)

and:

f(x, Y) = Xp - )}
Showing that independent errors are merely a special case of dependent

errors,

5. ANALYSIS OF THE NORMAL BIVARIATE ERROR DISTRIBUTION

In section 4, the equations of the normal bivariate error distribu-

tion were determined, and the elements of M were shown as variances and

1. This equation results from the assumption p = gxy introduced inaxay
section 3.5. The assumption may now be proven correct; Appendix C.
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covariances. The covariances for independent errors were zero. This

section is concerned with reducing a normal error distribution with

dependent errors to a form expressible as independent errors (covari-

ances zero). After this is accomplished, circular errors are obtained

by use of the methods presented in ACIC TR-96.

The quadratic expression for independent VQ~ and dependent DQ

bivariate error distributions are:

When covariances are zero the major and minor axes of the ellipse coin-

cide with the axes of the coordinate system. When the covariances are

not zero, there are dependent errors and the axes of the error ellipse

do not coincide with the coordinate system. Therefore, removal of the

non-zero covariances from dependent errors is equivalent to a rotation

of axes.

y

///<%V) / n/

/

~x
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The process of diagonalization of the covariance matrix is used for

the rotation.

Diagonalization is interpreted as follows: If a point p is allowed

to move freely around the perimeter of an ellipse, there are four posi-

tions where the rate of change of the distance (D2 ) between these posi-

tions and the center of the ellipse is zero. These four positions

correspond to the points of intersection of the principal axes of the

ellipse and its perimeter. The problem then is to find the maximum

and minimum value of p as it traverses the elliptical path. This in-

volves finding the extreme values of a function of two variables with

one side condition. Introducing the Lagrangian multiplier (W):

D2 - F+

where:

F is (x2 + y2 ) the square of the length of the radius vector, p.

g is the side condition (the equation of the ellipse).

allx2 + 2alxy + a2 2 y - C = 0

or:

C - (allX2 + 2al2xy + a2 2 y2 ) = 0

Thus:

D2  2 2  + X (C - ax 2 - 2a1xy - a22Y2
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The extreme values of D2 occur when -x and - equal zero.

D2  - 2xX(2alx + 2a2 y) = 0

= x- (al1 x+a 2y) = 0

similarly:

y-X (a12 x+a 22y) = 0
y

Note that:

121a2 a 11l 12 12 22

* 11 a 12 a 1 a2 (al11  + a12a 12=1),J (a3 _a 12+a 32 a22=0

a2 (a12a +a 22a 0), (a2a1 2 +a 22a 22 =)

Since A.A "1 = = L 1

2 11 b12
Multiplying the by a and E- by a yields:

aZ- - X (a lla lc +a 2a1 ly) = 0

al 2 y -X (a 2 al 2 x + a2 2a
12y) - 0

Adding:

al2 + a12y- ix (a 1 1 a1 1 + a 1 2 a 12 ) + y (a1 2 a1 1 +a a 1 2 )J=  0

or:

a'lx + al 2 y - Xx = 0
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D2  12 )D 2  22
Similarly, multiplying by a and - by a yields:

a 12 x - X (alla12x + a12a12y) = 0

a2 2 y - X (a. a2 2 x + a2a 2 2 y) = 0
12 22

Adding:

a12x + a22y- x (a1 1 a12 + a1 2 a2 2 ) + y (a 1 2 a' + a2 2 a22)} 0

or:

a12x+ a2a 2y - Xy = 0

Therefore:

allx + a2y - Xx = 0

a 12 x+ a2 2 y - = 0

Collecting terms:

x (a l l - x) + al 2 y = 0

xa12 + (a 22 -)y = 0

To have non-zero values for x and y the determinant of the coefficients

of the two equations must equal zero.

a l l -x a 1 2

= 0
a12  a2 2 _x

The expansion of the determinant is considered the characteristic equation
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which, in the bivariate case, is:

_ (all + a2 2 ) X + al1a22 - (a1) 2  0

Solution by the quadratic formula yields:

- V 3b 2 -ac
2a

where:

b=-(a 11 + a~l) = -(01 + 2)

c = i la 2 _ (a 2)2  = 
2 x ( - p2 )

x y

Therefore:

2 2 2 2 2 "

2 ±2

S= -++2 (2 2
2 2

But for independent errors p - 0.

Consequently:

2 2 2 22

2 2
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or:

a 2 + 2 =2 )x

2 2

a+ 2) 2 2

2 2

(02 + 02) a2 2)
Xx Y'

"22 - 2 y

That is, the square roots of 7.4, and X correspond to the maximum and

minimum values of D . Since X j, and X also correspond to the squares

of the lengths of the principal axes of the standard error ellipse,

it can be concluded that the magnitudes of the principal axes are V\%
and _V 2" This is true for dependent errors as well as for independent

errors. The process of diagonalization reduces to the formation and

solution of the characteristic equation of the determinant of the

inverse of the moment matrix.

6. ANALYSIS OF THE NORMAL TRIVARIATE ERROR DISTRIBUTION

The theory of the normal bivariate error distribution can be gener-

alized to cover the normal error distribution for 3 or more variables.

In this section the trivariate case is considered, but a complete deri-

vation is not presented because the end value is visualized as an

extension of the bivariate case.

6.1. General Form. The general normal trivariate error distribution
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is written:

f(x,y,z) = K3 exp{- Q3 }

where:

K3 = F

" = lX2 I 2a + 2X 3 Z + a22Y + 2a z + a z

x = (x-2) y = (y- ) z = (z- )

For convenience let - = = 0

The moments of the distribution are shown as:

11 = ,2
variance of x = a =

22 2y = a2 = 2y

z = a33 = 02
12

covariance of x and y = a = axy

x and z - a13 = Cxz

y and z = a23 = Oyz

6.2. Axes of the Error Ellipsoid. The characteristic equation

for the trivariate case is obtained by expanding the determinant

all -X a12  a13

a12  a22 _. a2 3  o

a13  823 a33

1.
Derived in Appendix B
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It will be of the form:

X3 - r%2 + s% - t - 0

where:

r = a11 + a22 + a33

s = alla2 2 + alla33 + a22a33 - (a12 ) _ (a13) 2 - (a23)2

t = alla2 2 a3 3 + 2a12 a13a23 - all (a2 3) - a 2 (a 1 3 ) - a33 (a12 )

The first root (Xa) is found by applying Newton's method to the

polynomial in question (%3 - r%2 + s% - t = 0) and utilizing the

first derivative and an approximate value for %a . By successive

iteration the root can be solved for as many correct digits as re-

quired. After the value of one root is obtained, the cubic can be

reduced to a second degree polynomial and solved by the quadratic

formula for the remaining two roots. The procedure is as follows:

f(%) = S3 - r 2 + s%- t = 0

f'(%) - 32 - 2r% + t

Solution of first root:
1

Let l, be first approximation

f(xl)

1.
A first approximation is the larger of the diagonal elements,l1 22 33
a , a or a.
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successive iteration:

x3 - '(3W

f()

X. . .n-1

Let:

%a = 7n

Applying synthetic division for the remaining roots:

a%2 + (b + aka)X+ I c + (b-+ aa) %a 0

Let:

A a

B = b + aka

C = + (b + aa) %a

Then:

- B + /B2 . 4AC

2_A

Therefore, the variances are known and the axes of standard error
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ellipsoid are:

b- 1'f2

7. ORIENTATION OF TME ERROR ELLIPSE' AND ELLIPSOID

The orientation of the error ellipse or ellipsoid must be deter-

mined to complete the geometrical description of an error distribution.

It has been concluded in previous sections that the covariance matrix

contains the constant coefficients of the quadratic expression of the

error ellipse and that the principal axes of the error ellipse are

obtained by diagonalization of the covariance matrix. The operation

provides the maximum and minimum errors of prescribed probabilities

and is comparable to expressing the error ellipse in its standard

form. It is possible to construct equi-probability curves around

the mean value of the error distribution by multiplying these inde-

pendent error values by a particular conversion factor (Theory of Errors,

ACIC TR-96). To construct the equi-probability curves, the orienta-

tion with respect to the original axes must be determined by solving

for the direction cosines between the original coordinate axes and

the principal axes of the error ellipse. The following general theory

and solution holds for both the bivariate and trivariate cases.

7.1. General Theor. Matrix theory coincides with and makes
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explicit use of vectors and vector properties. The rows of a matrix

are considered row vectors and the columns, coluimn vectors. The

elements of the matrix are components of the vectors. The solution

for the direction cosines involves determination of the cosine of the

angle between the original coordinate axes, (x,y), and the positive

direction of the principal axes, (x',y') of the error ellipse.

From vector analysis:

a • b = l al M cosa (1)

where:

a - b = dot product of the two vectors a and b

lal Ii = product of the magnitude of the vectors a and b

cos a = cosine of the angle between the vectors a and b

Diagonalization of the covarience matrix yielded values which were

the latent roots (%l, 7, and X3) and corresponded to the squares of

the lengths of the principal axes of the standard error ellipse. In

converting the quadratic form of the dependent errors (covariance

matrix with non-diagonal elements unequal to zero) to a quadratic form
1

of independent errors (diagonal matrix), a coordinate transformation

has taken place. Therefore, there should be a transformation matrix

which, when applied to the covariance matrix, will yield another matrix

1.
In this instance, where the mean value of the distribution was
chosen as the origin of the coordinate system, a rotation has tahen
place whereas in the general case it would be a transfonation.
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with the latent roots as its diagonal elements.
1

By definition, the latent vector of a linear transformation, as

described above, is:

AX - XX (2)

where:

A = covariance matrix

X = latent root

X = latent vector

7.2. Direction Cosines for the Bivariate Case.

7.2.1. Derivation.

From eq. (2) AX = XX

*1X 1 + a Y = ,1Xl (3a)

a X +a Y = XY
12 1 22 1 1 1

or:

(an - X) X, + a12 Y1  a (3bl)

a12 Xl + (a22 - %) Y, = 0 (3b2)

Since the cosines of the angles between the vectors are involved,

it is possible to assign any value to one of the vector components

and solve for the other with respect to the first.

Letting X1 = 1 in equation (3bl)

I.
Refn, Computational Methods of Linear Algebra, pp 37
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Then:

- (all- Xl)
Y1 =al

a12

or solving (3b2)

- a1 2YI =  (22 -% )

The values XI and Y when placed in eq. 3b1 and 3b2 satisfy the equa-

tions and are, therefore, the latent vector components of the latent

root (7 I ).

Similarly for the latent root (N)

*11X2 122 = 2X2 (4a)

*12X2 + a222 = V2

or:

(a 11 - ') X2 + a1 2Y2  = 0

a2X2 +(a 2 2 - ) Y2  = 0

Letting : - 1

-a12 (all -7.2)= 2  = = ____

2 (2 - a 12

X1. YI' X2 and Y2 are the vector components corresponding to the respec-

tive roots and are the components of the X matrix in equation (2).

1 X (5)
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Cosine of the angle between the +x and +y' axis:

i 1

+ j b 2 (vector along + y axis)

cos a,, -

2 2

Angle between the +y axis and +x axis:

lo a (unit vector along +y axis)

ii ii 1 lj b

cos a 2 1  = .

+g y
Anlebewenth2. -Cmain thd +y e axis: toncsne r

11

X2i + 2j b2

Cosa022Y

7.2.2. Computation Method. The direction cosines are

obtained by writing the latent vectors in form of eq. (5); suming

the squares of all elements of each individual column; extracting

the square roots; and dividing each element of the matrix (5) by
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the square root of its column.

x' y'
X IX X

x cos ai = Cos 12 =

(6)

Yl ___

y Cos a21 = , cos a22  =

By definition the direction cosines measure the angle between the

original positive axis and the positive principal axis of the error

ellipse. The angles whose cosines are positive (+) are less than 900;

the angles whose cosines are negative (- aij) are angles of 1800 minus

the angle of + aij"

For example consider the cosines as:

XI

x+ +

y +

The angle between x and x' is 900 or less

y and x' is 90° or greater

Therefore, xI must be in the 4th quadrant.

The angle between x and y' is 90 ° or less

y and y' is 900 or less
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+

\ all

J# +X

+x'

7.3. Direction Cosines for the Trivariate Case. The direction

cosines for the trivariate case are found in the some manner as the

bivariate case. However, the addition of a new coordinate axis (Z)

and another vector causes difficulty in the solution of the latent

vectors. In the trivariate case there are 3 latent roots (%) which

must be solved to obtain 9 latent vector components.

From eq. (2): AX = x

For the latent root X.:

a ,Xn + ayn+ a137 " % nr
al2n + a22y n + a23Zn = Vn n  (7a)
a13/n + a23Yn + a33Zn = nZn
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Where n refers to any one of the 3 latent roots (%l, X2 or 3)

or:

(all - )Xn + al2Yn + al 3 Zn 0

al2n + (a 2 2 - n) Yn + a2 3 Zn = 0 (7b)

a1 3 Xn + a2 3 Yn + (a 3 3 - )Z = 0
ni

Since the determinant of this system equals zero the solution presented

in Coordinate Geometry, pp. 114-115 Theorem [22.1], is applicable.

Then:

Xn: Yn: Zn: {ai1a 23  - (a2 - ") a 131 I(all- a 3  - a1

I 11 -xn )a22 nd 12a12 I

= 1(822 - "n(a33 - n)- e23a23}: - I{a12 (a 33 - ;n) - a 13a23 1:

I{aJ223 - a13 (a22 - )I) (8)

- - a12 (a33 - ?%n) -a2 3al33}: j(all - Xn)(a 33 - Xn) - a1 3

- {(all - n) a23 - aj2 a 13 1

1.
Because this is the equation set equal to zero in section 5, the
determinant of the system must equal zero to determine the values
of Xn .
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The ratios of the latent vectors may be computed from any one of the

above equations. For example:

X {'a.a3 - (a22  1 1 ) a 131

or:

X1= (s 22 - %,)(a: 33 X1) -a23a23 1 , etc.

The latent vectors of the other roots are then solved similarly and

the vector matrix X is formed.

Under the same hypothesis as in the bivariate case,, the direction

cosines are computed.

X1 y' Z

Xl X2  !3x coosall w T cos a 12 - Cos '3

1 2 3

y cosa 1  Cos a 2  Cos a23 (io)21mS1 2 2 a2 8mS3

zcsaz1 Cos a 2 cos
zcs 31  mS 1  32 S2 co 33 S 3
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where:

S - + + Z2

S2 2 2 2 z

S3 + y2 + Z3

3 \/3 3 3

The solution of equation (8) allows for the signs of the vector

components, and orientation is similar to that in the bivariate case.

That is, the direction cosines, as given in matrix (i0), measure the

angles between the respective axis.

For example: z

y

I

x
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As oriented using x', y', z' direction cosines are:

x' y' Z '

x + - +

y + + -

z - + +

7.4. Basic Properties of Direction Cosines. Checks resulting

from the basic properties of cosines to insure correct values are:

2,3

a. cos 2 an = ; X cos2 a n2 = 1; cos 2 cx 3 = 1

n1 n=l n=1

b. To check the perpendicularity of the principal axes.

Bivariate case:

cos a Cos a + cos a cosa 0
11 21 12 22

Trivariate case:

cosa 11Cos a1 + cosa 1cos a 22 + cosa 13cos a23 - 0

cos a cosa + Cos a Cos a + cos a cos a = 0
11 31 12 32 13 33

cos a21 cosa +Cos 22cos a 32 + cos a 23cos a33 = 0

c. The determinant of the Ecos anm] must equal +1

d. Each element in [cos anm] must equal its cofactor

e. X' 1 AX = X

By multiplying the inverse of the latent vector matrix by the covariance

matrix and zhe latent vector matrix, a diagonal matrix is obtained which

has the latent roots as its diagonal elements.
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3. APPLICATION OF THE MOMENT (COVARIANCE) MATRIX TO IRAST SQUARES

ADJUSTMENTS INVOLVING CORRELATED OBSERVATIONS

In many geodetic investigations least squares adjustments - a

special branch of statistics - are used to obtain consistent estimates

of measured variables and to provide estimations of the reliability

of the estimates (i.e., standard errors).

This section contains a matrix solution of a general least squares

problem, and shows how a system of normal equations is related to the

covariance matrix, and how the theory of the preceeding sections are

used to reduce a system of correlated observations to one involving

derived observations which are uncorrelated.

8.1. Observation Equations. Suppose the following system of obser-

vation equations is given:

ax + b x + c x+... mx + s = Z
11 12 13 im 1 1
ax +bx + c2x 3 + ... mx m + s2  Z21l 22 2 2 2

ax + b x + c x + ... mx + s n Znl n2 n 3  nim n n

where:

a,b,c, ... , m, s are constants known from the theory of the observa-

tions, Z is the quantity observed and xl, x2, ... , xm are unknowns to

be found.

If the observations were without error, these equations would be

satisfied by the true values (l' 92' ..' 9M) of Xl, x2 , ... v xm.
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Since all observations are subject to small errors, there is no

system of values for the unknowns which satisfies the equations

exactly. As previously mentioned, one of the purposes of a least

squares adjustment is to find a system of best estimates (R1 11,

•.., Xm) for the unknowns.

Let hl, h2 , h 3  *... hn be the values of the left side of the

system of observation equations when any assumed set of values

(x', xI, ... , x1) for the unknowns is taken. Then the errors (or
12m

more strictly the residuals) of the observations are given by:

v i = hi - Zi

where:

i = 1, 2, ... , n

Letting:

ki = Zi - si

the system of observation equations is written:

al +b +cX 3 + ... + mx m - kI a v1
11 12 1X3 - 1 1n

a +b x+ cx + ... + mx - k v
n1 n 2 n3 nm n n
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Introducing matrices, let:

a21  a"2 ... a

anl an2 ... a

where:

a 11  a1 a12 = bI

a2 a 2 2 2 =  b 2
, , etc.

a nl -a n  an2 = bn

k2  3 ' 2 V = 2 X x2

nxl mxl nxl =m1

kn XM

pl 0 ... 0

0 p "' 0

P 0 P2 weight matrix

0 0 "Pn
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The residuals of the observations are given by:

V = -K+AX

nxl

If X has the value X,

(1) V = - K +AX

8.2. The Theor of Least Squares. The theory of least squares

requires that the sum of the squares of the weighted residuals be a

minimum, that is [pv2 ] or [pvv] equals a minimum. A necessary con-

dition for the fulfilment of this requirement is that the m partial

derivatives of [pvv] with respect to Xl' *'" im be zero:
(I Vl n( ) t~vl . IV, + "'" n -o

(2) -Ej[pvv] - 2 Piv -+... =

where:

J = 1, 2, ... , m

From (l):

'-j [a] A

where:

i l i 2,9 ..., n

j , 2, ... , m
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An alternate way of writing (2) is:

AT.P. z 0

Inserting (1) into this equation yields:

AT - K + A) - 0

or:

AT. P.A - AT.P.K

8.3. Solution. The matrix product AT. P.A is equivalent to B, the

symmetric coefficient matrix of the normal equations for the system of

observation equations. Thus the preceeding expression may be written:

BX = A*P.K

Letting AT. P.K equal C, the solution for the unknowns in matrix nota-

tion is:

i -BC

8.4. Verification. [pvv] can be obtained from the matrix product:

- vT

To verify that V actually minimizes [pvv], consider another set of

corrections V' and values X'.
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In this case:

V1 = - K +AXI

Subtracting V from VI:

VI - V - A (X'-

Now:

V, (v'-v) + v

and:

(pv'v1] -vfT p.vf

Substituting V' = (vI - V) + V:

(pv'v'] - [(v1 - V) + V] T. P.[VI - v) + V]

Applying the distribution laws of matrix multiplication:

T T
Epv'v'] - (V, - V) *P-(v' - V) + (vt - V) *P-V

+ V 'P.(vl -v) + VT.p.v

rearranging terms:

TT T
Epv'v'] - V.Pv + (I- V) .P.(VI - V) + (vt - V) *PV

+ v T .P.(v' -V)



Substituting (V' - V) - A (XI - X) into the third and fourth terms:

T T
[pv'v'] V .pV + (V' - v) .p.(v' - V) + JA (X' - )j T.p.v

+ vT.P. I A.(X' - R)

_ vT.p.V + (v, - v)T.P.(v, - v) + (xI - i)T.AT.P.V

+ VT P.A.(X' X

but:

A7'P'V - 0

thus

VT.*PA - 0 - 0

and

Ep'v'] - vT.P.V + (VI _ v)T.P.(V, - v) + o + o

- E pvv] +[p (V I - V) (VI - v)]

. Ipvv] + (v, . _ v)2]

The factor [p (vI - V) 2 ] is positive or equal to zero. Thus it

is seen that Epv'v'] is a minigmum when[P p vI - V)2] is zero or when

V' - V.
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8.5. The Moment Matrix. Now assume that the true valuesY 2

E m and true errors El 62.9 .. ,9 EM were known.

Introducing:

E and

mjEmi

where:

Ei= i- t

(xe] = the sum of the squares of the weighted true errors

= (pvv] + p (61-V)2

T
= [PV-V] + ('E' - V) *. (E' - V)

but:

61 - V A A(E-

(peE] - pvv] + jA.(E - R)j T.P IA.(E - j

[pvv] +(E-~ .AT.P.A (E -X:)

but:

AT*P.A =B
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and:

-T
[peel = [pvv] + (E - x)*B.(E -(

= q2 + (E- B(E - )

where:

q = _V'[PT
From statistical theory it is known that the normal error distri-

bution of :R, x2' 22"* im and q can be written in the form:

f( ... ' , q) = Kexp - Q

where:

(3) Q (quadratic form of the error distribution)

T -(X-E)T' B(X- E) (ref. i)

a2
2

a = the variance of a single observation after adjustment.

and:

K is a constant corresponding to Q.

It was shown in section 4.2. that Q of a normal bivariate error

distribution is:

Q 1 1X Y]T.M-lIX Y3

where:

M"I - the inverse of the moment matrix.

Comparing this expression to (3) indicates that:

M-I= B_6
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Multiplying from the left by M:

2

Multiplying from the right by B-1

MBB
- I

B-1 = M
2

or:

M = c2B 1

The latter equation states that the moment matrix (or covariance

matrix) of the best estimates of the unkmowns is equivalent to the

product of the variance of a single observation and the inverse of

the coefficient matrix of the normal equations.

M in the multivariate case is:

1 1xIx2 OXIO 2 P m I .X mxIO

M

65



where the diagonal elements are variances, the non-diagonal elements

covariances, and the p's correlation coefficients.

8.6. Transformation of Errors. In the case of independent

(uncorrelated) errors, the p's are zero and M is a diagonal matrix

or equivalently B-1 is a diagonal matrix; in the case of dependent

(correlated) errors the p's are not zero and B l is not a diagonal

matrix. Thus it may be concluded that: if B I, for correlated

observations, is transformed into a diagonal matrix, then uncorrelated

errors are obtained.

To effect such a transformation the process of diagonalization is

used (section 5 for the bivariate case). For the multivariate case,

the determinant of B- 1 , with a factor X subtracted from each diagonal

term, is expanded and set equal to zero. These operations yield an

mth degree characteristic equation having m real roots. The roots

when multiplied by c yield the variances of the unkmolms in an

uncorrelated sense. The standard errors are found by extracting the

square roots of the variances.
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APPENDIX A

EXPANSION OF THE NORMAL BIVARIATE MOMNT GEITERATING FUNCTION

(Reference No. 12)

In section 4.3., it was asserted that:

E~exp (Ox + Oy)}. =Tfexp f- 1 (a1 x + 2a xy + a 2 )

+ 1,xX + %yy dy (1)

4 x + -- e x p  -all a ll1

a 2 " j e ally i
- (a 2 2  + a) (AI Rdxdy (2)

where: 2x + alo 2 a

R = 1 1  - 2
IAI

Let:

a 2x [the exponential in (i))

anx2 - 2a xy- a22 y + 2xx + 20,y

and:

l = a 1 1 ( 
a

ll

A-i



a 2) aMx a
122

P2 2 - al- A -e- JAI

To prove that (1) equals (2) it will suffice to show that:

a= P +P2 +R

or equivalently that:

R = a -1 -y2

P a + a

_~ ~ _L 2

l x2  + xy - x + 2 xy + 2 2
2 l2a 2y all all al

a aa 1  11 aa,,2 + --2-
allll

2 2
2a~ Yx +2al2exY 2 a 2 x

Pi = - alx2 2a2 + 20xX+ al ly

all all al

a2 2 "lg alj 2 l
11A

2 2a a0 2aUallx' 2a2 22
.2 + + 9+!i!

A-2



Expanding:

2 2 y 2  2a 1 2a2 2elxy 2aj2Oy 2 aa2(Y
a 2 2  12Y + 1a22e~ 2 1 1a1 26~

P2 a2 a 1  J AI IA We,11 + IAI lAll

a3 6 2 2 4 2 2 2

+2a 11 a12 22ex6 2 a~ 12x y al a 1 2 2 e x a 12 e alla,22

IA1 IA12 a1  JAI 2 IAI 2a IAI

+ all 1 ~ 2 y

IAI a 1

Collecting terms:

a+P1 +P2

(D2 0 02 (D2 4W !aj?!Xy
-R - ll + 2a 1 2xy + -Y 

2exx - -ey al 1x -2a 1 2 xy +_a

a 2  2 a2 2 2aey12___2 1 2 Y 2 2 2 Oy __

+ 2ex x- -- a a2 y + al JI + a1

+2a 11 a 09 2a 11a2 2a a1 a2ex 2a lal2 0e
iiA 2 %r 1A a.I12 22y 112 x

00 0
2 2 a2 2e2xa12 a22ex + 12O +1 e 2 ~a 1

JAI 2 A12 a~ JAI 2  JA12a 1
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Combining terms (small numbers circled above expressions indicates

expressions combined)

a) a 1 x2  alx 2  o

M 2a12xY - 2a2xy = 0

@ '+a22y - a22y2  0

+ 20xx - 2exX = 0

2a ely 2a2a22 exy 2+aGxy

all IAI IAI all

2 IPI a,2,9y - 2alan 2y + 2a3 xg
2Im ae - A al~ 2 aJ1afa 2 2 'oxy 2 ,y

IAI a 1 1

2 JAI a,,ly - 2a,,ly (a 1 1 a 2a

IAI a

Since:

2
alla2 2 - a12

2 a exy - 2a e y = 0
al
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2 2 2 2
all all

a 11  a 11

+ 2alla22ey1 2alla1eY
S+ IA-I IAI a11

Since:

a1la22 = IAI + a
2

21AI + 2a 2  _2a 2 ).y

IAI

(+®+ 29,Y + 2ey = 0

2a a,.a. 2a a0 2a aa -2a
3  9.6

+ 11=2'9xy 1112ox~y 111222 12 y

IA, 2  IAI 2a 11  IA, 2

2a, 2 (alla.2 - al) 1.1y 2a 96x"-

IAI 2  IAI

2 2 4 2 2 22 4 2
l2ex  IAI alla2 2 129x + a1 2 xIA, 2  IAI 2' al IAI 2a11l1

A 2 221 IAI2 2  IAI2a22 e2
2 - l2x alla22 - 12 e - 2x

IAI 2 a IAI 2 a
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2 e J(AI +a 2 _ 0( 1 a 2  a2a) 20
11; ~~~ (-&a20

LAI a 1 1  w all IAI

2 2 2 2 2 3 2 2 2 2a 11'2e1 + l 11220 y+ a 1 1 al2

2 22

IAI 2 IAI 2 a - al IAI

!; - ~ 11 (ala2 - 12) allO

IA, 2 W

Therefore:

-R - 1+@+ @

2a 0 0 02 82
-R 12 x y - a22ex a

IAI IA IAI

or:

2 e2
R a 22 0x - 2a 12 0 x + a 11 y

IAI

Since

1 822 1J21

a.2 all

IAT w

Comparison yields

a22 al
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a 1.2 a 12]
IAI

etc.

Thus: R may also be written as:

112 22 2 12
R = a Ux + a ey +2a ee
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APPENDIX B

DEVELOPMENT OF THE CONSTAINT FOR A TRIVARIATE ERROR DISTRIBUTION

(Reference No. 12)

This development can be carried out by introducing a change in the

designation of the coordinate axes and f~lloving the procedure used in

the bivariate case.

From section 6&

f(x,y,z) = X3 exp{- Q3

Taking the iftegral over the entire universal

+e4 +O +I

F(x,y,) f K3 exp { Q dxdydz V 1

-us -* -e@

where:

3 - 1alx2 + 2al2xy + 2al&z + a2y 2 + 2a 2 3 yz + a33z2

+W+4 +*£1 f
4 & mff fexp - Qtdxdydz

-us--. -e

Making the coordinate notation change:

y3

/ y to Y2

x yl
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Q3 can nouy be :ritten ini simplified form by:
3

Q3 =
i, J=l

where:

y1  = x

Y2 = y

Y3 = z

Q3 is now written: 3 3

a~ Y,+J2+i = i)A 2

a11  +i a ) ij a j

3
Letting: 3 al3 Y3

Y, +J=2

a 2
1
3 Y3Z2  = y+

z3 = 3

a - aljai (ref. 11)
ilj j a1 1
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1 I

ij2

kJ ___

akk k-s
k-1,k-1

Using these substitutions the integral becomes:

+= +C* +Go

_ 1f fexp a 2 12 a z2 PlZ2dZ3x3 -j-2 222 2 3333

-, -0 -IS

Next it will be showm that:

Q3 a 2 a22Z2 2 a333

Once this has been proven, K 3 can be found by integration.

Proof: In a symmetric quadratic form:

a j =aji

a 11a = a11

a12 a 21

2a12
a212 = a22 - a-

J=2
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a at - 3 23

33i-3 33 a2
J-3

2

-a _a 1

a3133 33 al.
J=3

-a a 1 3 ' 2 1
23 12 23 a 1

J=3

1 y" +as 1 2 ay

a' I

z 3 y3

Using the above substitutions: (D

a2 2 2,a2 2

1 2n1 2 +aay 2 2  2 1 9y2 Y3 + al 3 y3

2L a1 1y1  Jz1Y2 +s131 3 +~ al an

and:

a2al



2
1 a I( a12 2 al 2 al2Y1 3

2+ 1~2 ( alla2 3 -"a]2 a 1 3 .)2

2 a 322 -a '2l a 2 az y2

2 a2 2  (a1 a23  -aaa 1 3a 22Y2 a1 3al

Also:

22 23

+ 1 alla123 aaaa3 128'a13 \2

a111 333

S1 1 ~ Z ~2 a 2 a1 3 Y 3  a 11'23 + 2a 2  a3 2~

The expression within the bracket is Q. QED
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Now:

fexp {.. cx2}
1

applying this integral to the integral for 1 yields:

1 1

all - ala

2

22  2 a2 a311

a23-6

3 1 -
l q 0a 213 a3  a 2 2? f I1

22

The product of the radicand is:

(an) (ag) 133 1 - Nrala2a3al
a2622
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al ,ai a.. a I3: - al1 (a n 13 ) = l a 1 2  a313 - (e,213) P

a a a 2 2

12 a13 2a 2 3 a1 3 a 12  a1 3a 12
= a"I~~~i + 2~

all a2.2 ) a 33 - a2 a .l al1

Expanding:

2 2 2+

alla22a33 a22 13 33a12- alla23 2a23a21a31

This expression is merely the expansion of the 3 x 3 symnetric deter-

minant IAI

a11 a12 a13= a l  a2 a13

JA a12 '22 a23

a13 a23 a331

Therefore:
K 3 3

tt

or:

K 3 = 7 _5g
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APPENDIX C

PROOF OF ASSUMPTION THAT Vxy - poxcy IN NORMAL BIVARIATE ERROR

DI STRIBUTION

In section 4.3. the general normal bivariate error distribution

was derived using the assumption that (Vxy - Pcaxy). Determination

of the mixed product moment, (Vtxy) should equal poxvy if the assump-

tion is correct.

From section 4.3.

1 1- 12+ ,. "2

f(xy)dxdy =2,x j-2 1 exp 1  - ()

29i 22 (1- _ ) 2 2

2p (x -_ )(y- dxdy

To prove: tPxy = P0x~y

9 -=E{(x 2 )(y = - R )(y -~ f(x,y)dxdy

let:

(x -), , z 1 and ( y  Z2
ax ay

Then:

x- 5 = za x  Y zPay

x-Zlox +y= Z2 ay+Y
ax- =cxZ, dy = aydZ2
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Then substituting in:

exp {2( - 2 z 1z - 2pZlZ2 + -z a} xdZ,,7ydZ2

For a given distribution the quantities ax, vy, p and 2A are constants:

rxy 2 i )- - 2 2 _ 2pZ 2  dZ dZ2
SZZ 2 e1 - +T

22t-P2)Z-Z Z 1 }d(1dZ

Introducing two new variables:

V -W v+w v2 -w2

-V 2 2 W

Then:

2pZ +2= v2 2vw 2 2w 2 2 2+2vw +w

= v 2 (- p) +w 2 (1 +P)

Since the Jacobian of this transformation is unity, dZldZ2 equals dvdw.

Now(,- p)(l+p) _ 1- p 2

Thus:

2(1 p)( +

+ 1 dvdw
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2r -1.  v2 w2} ov d-w.= ~~~V -T p/ o V, -++-o
ex v2+w dv dw2 1 +- p( v 1 -p -,wT -

The first integral can be written:

or:

ex'P' l- P) . I 1 p+ p

p do

Now:

-exp{2 1 +pdv is of the form fX2 expf- cx2}dx

which is

1

where: c 2(1+ p)

Thus the first integral becomes:

fexp- 1 1" -\r"-\ ( 2 1+0)3
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or:

1+p 1 2 -

The latter expression is of the form:

f2{. c2x }dx -

with:

2 (1 - p)

and:

1

C-

Therefore, integration of the first integral yields:

1+- 1 +2~ 'V T P

Using similar methods on the second integral yield -(i - p) as the

result.

Therefore:

t OX0Y ( +p) -( p)
XY 2

or:

Ixy Paxay
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